top of page
  • Jesse Sakari Hyttinen

What is TGET? And who is its creator?

Updated: Apr 21, 2021

TGET is a tree generation and enumeration triplet, consisting of the condition matrix, algorithm TGA (tree generation algorithm) and vertex edge algebra. The condition matrix is a formal way to define a forest whose trees of size n one wants to generate with TGA. The tree generation algorithm - in turn - uses vertex edge algebra as its language to generate and represent forests as collections of trees.

Tree enumeration involves also TGA, its language and the condition matrix. Algorithm BFG (branch form generator) - a major by-product of TGA - generates (enumerates) in compact form all possible forms of target branches; And then the algorithm BFG --> TGA - also a major by- product of TGA - uses this information to generate (enumerate) in compact form all the trees of the target forest. The forest is defined by the condition matrix and all the algorithms use vertex edge algebra as their language. A source vertex with connected branches forms a tree, although there are single vertex trees as well.

TGET is a creation of this post's blogger:

Hi fellow math enthusiasts! My name is Jesse Sakari Hyttinen and I am mostly self-learned what comes to tree generation and enumeration. I will tell you more about TGET and its (my) story in the following posts.

12 views0 comments

Recent Posts

See All

Skill levels in Treespeak

Examples of Treespeak times, index +1 Novice: Tsm 0-11 --- t >= 10s / rooted tree Apprentice: Tsm 0-11 --- t € [7s ; 10s[ / rooted tree Journeyman: Tsm 0-11 --- t € [5s ; 7s[ / rooted tree Adept: Ts

A new book - Jesse Hyttinen

I have now written five math books, and may write another one in the following year. The current book includes new viewpoints about very well known numbers. Examples include pi and Euler's number. The

Generating r9 part 2 - Jesse Hyttinen

Hi and welcome to the Matladpi blog! We continue the generation process in the column 7: =1+7+1 =1+(1+2+1*4)+1 =1+(1+2*2+1*2)+1 =1+(1+2*3)+1 =1+(1+3+1*3)+1 =1+(1+(1+2)+1*3)+1 =1+(1+3+2+1)+1 =1+(1+(1+2

Post: Blog2_Post
bottom of page